

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

Determination of roots of an equation of the form f(x)=0 has great importance in the fields of Science and Engineering. In this chapter we consider some simple methods of obtaining approximation roots of algebraic and transcendental equations.

Polynomial functions :

A function f(x) is said to be a polynomial function if f(x) is a polynomial in x. i.e $f(x)=a_0x^n+a_1x^{n-1}+....+a_{n-1}x+a_n$, where $a_0 \neq 0$, the coefficients $a_{0,a_{1,....}}a_{n-1}a_n$ are real constants and n is a non-negative integer.

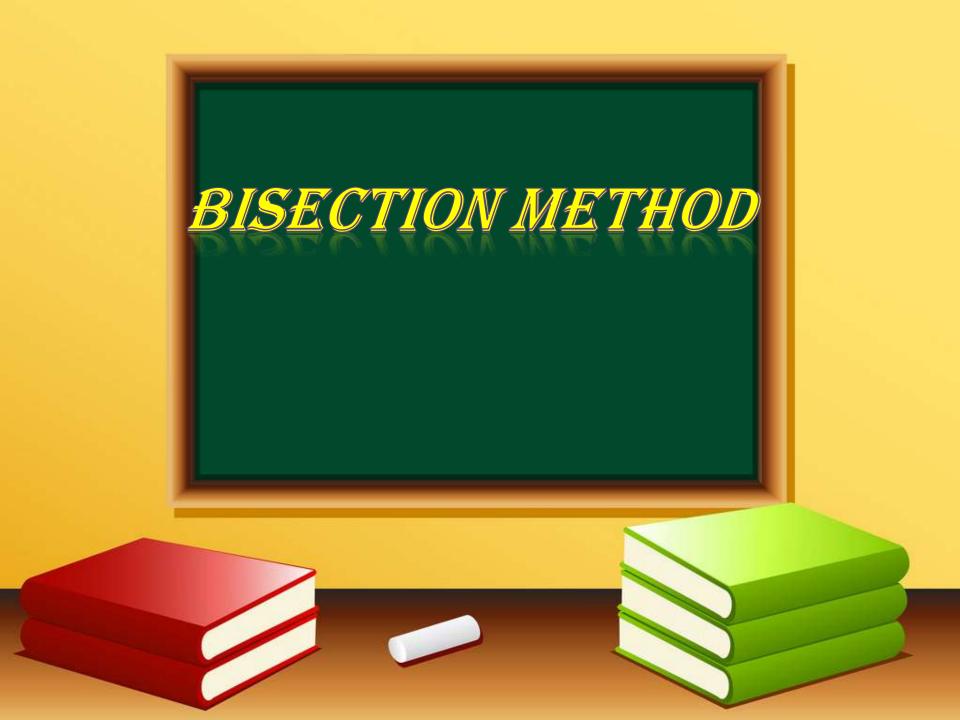
Algebraic function & Transcendental function :

A function which is a sum or difference or product of two polynomials is called an algebraic function. Otherwise the function is called a transcendental or non-algebraic function.

If f(x) is an algebraic function then the equation f(x)=0 is called an algebraic equation.

If f(x) is an transcendental function then the equation f(x)=0 is called an transcendental equation.

e.g $f(x)=2\log x-(\prod/4)=0$, $f(x)=e^{5x}-x^3/2+3=0$ are examples of transcendental equations.



Bisection method is a simple iteration method to solve an equation. This method is also known as Bolzano method. Some times it is referred to as half-interval method.

• Suppose we know an equation of f(x)=0 has exactly one real root between two real numbers $\mathbf{x_{0}}$, $\mathbf{x_{1}}$. The numbers is choosen such that $f(\mathbf{x_{0}})$ and $f(\mathbf{x_{1}})$ will have opposite sign. Let us bisect the interval $(\mathbf{x_{0}}, \mathbf{x_{1}})$ into two half intervals and find the mid point

$$x_2 = (x_0 + x_1)/2$$
.

If $f(x_2)=0$ then x_2 is a root.

If $f(x_1)$ and $f(x_2)$ have same sign then the root lies between x_0 and x_2

The interval is taken as $[\mathbf{x}_{0,}\mathbf{x}_{2}]$. Otherwise the root lies in the interval $[\mathbf{x}_{2,}\mathbf{x}_{1}]$

Repeating the process of bisection we obtain successive subintervals which are smaller. At each iteration, we get the mid-point as a better approximation of the root. This process is terminated when interval is smaller than the desired accuracy. This is also called as "Interval Halving method".

1. Find a real root of the equation $f(x) = x^3-4x-9 = 0$ using the Bisecting method in four stages.

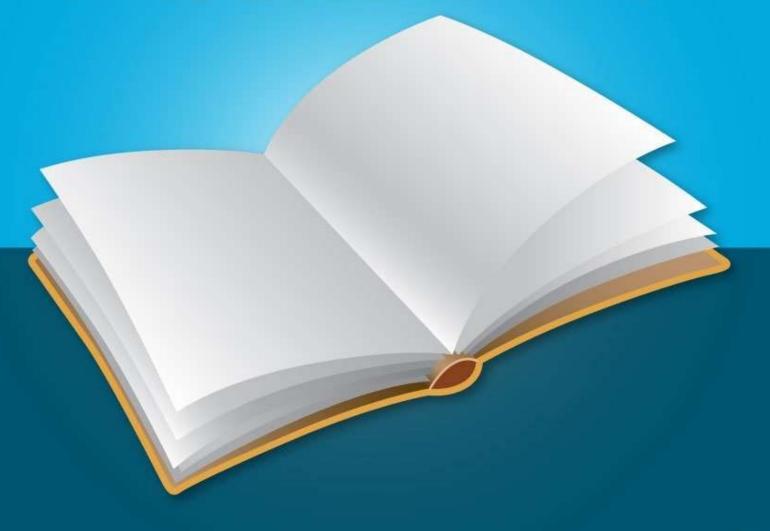
Given
$$f(x)=x^3-4x-9=0$$

Now $f(2.7)=-0.117=-ve$
and $f(2.8)=1.752=+ve$
Therefore the real root of the given equation lies in (2.7;2.8).
I) Let $a_0=2.7$ and $a_1=2.8$
By Bisecting method we have $\mathbf{X}_n=(\mathbf{a}_{n-1}+\mathbf{a}_n)/2$.
So $X_1=(a_0+a_1)/2=(2.7+2.8)/2=2.75$
Now $f(X_1)=0.726874999=+ve$
Therefore the root lies in (2.7;2.75)
II) Again let $a_1=2.7$ and $a_2=2.75$
So $X_2=(a_1+a_2)/2=(2.7+2.75)/2=2.725$
Now $f(X_2)=0.334828124=+ve$
Therefore the root lies in (2.7;2.725)
III) Let $a_2=2.7$ and $a_3=2.725$
So $X_3=(a_2+a_3)/2=(2.7+2.725)/2=2.7125$

Now f (
$$X_3$$
) = 0.107642578 = + ve
Therefore the root lies in (2.7; 2.7125)
IV) Again let a_3 = 2.7 and a_4 = 2.7125
So X_4 = (a_3 + a_4) / 2 = (2.7 + 2.7125)/2 = 2.70625
Now f (X_4) = -0.0049958497 = - ve
Therefore the root lies in (2.70625; 2.7125)
V)Again let a_4 = 2.70625 and a_5 = 2.7125
So X_5 = (a_4 + a_5) / 2 = (2.70625 + 2.7125)/2 = 2.709375
Now f (X_5) = 0.051243988 = + ve

Therefore the approximate real root of the given equation is x=2.71 up to two digits.

ITERATION METHOD



Let the given equation be f(x) = 0 and the value of x to be determined.

By using the Iteration method you can find the roots of the equation.

To find the root of the equation first we have to write equation like below

$$x = \phi(x)$$

Let $x=x_0$ be an initial approximation of the required root α then the first approximation x_1 is given by $x_1 = \phi(x_0)$.

Similarly for second, third and so on. approximation

$$x_2 = \phi(x_1)$$

$$x_3 = \phi(x_2)$$

$$x_4 = \phi(x_3)$$

Continuing in this manner, we get

$$x_n = \phi(x_{n-1}); n=1,2,....$$

In this method is convergent conditionally and the condition is that $|\phi^I(x)| < 1$ in the neighbourhood of the real root of $x = x_0$.

Which is known as Iteration Method.

1. Find the real root of the equation $x^3 + x^2 = 1$ by iteration method.

Solution:

Given equation
$$f(x) = x^3 + x^2 - 1 = 0$$
;
Now $f(0.7) = (0.7)^3 + (0.7)^2 - 1 = -0.167 = -$ ve
and $f(0.8) = (0.7)^3 + (0.7)^2 - 1 = 0.152 = +$ ve
Hence the root lies between $(0.7; 0.8)$
Also $f(x) = x^3 + x^2 - 1 = 0$
 $\Rightarrow x^2 (x + 1) = 1$
 $\Rightarrow x^2 = \frac{1}{x+1}$
 $\Rightarrow x = \frac{1}{\sqrt{(x+1)}} = \phi(x)$ Where $\phi(x) = \frac{1}{\sqrt{(x+1)}}$
Now $\phi^1(x) = -\frac{1}{2(x+1)\frac{3}{2}}$
Let the initial approximation be $x_0 = 0.8$

Let the initial approximation be $x_0 = 0.8$

Now $|\phi^{I}(x_0)| = |-\frac{1}{2(0.8+1)^{\frac{3}{2}}}| = 0.411035345 < 1$ in the nbd. of $x = x_0$. Hence Iteration method is applicable.

Therefore Iteration method is $\mathbf{x}_n = \phi(\mathbf{x}_{n-1})$; n=1,2,...

So
$$x_1 = \phi(x_0) = \frac{1}{\sqrt{(X_0 + 1)}} = \frac{1}{\sqrt{(0.8 + 1)}} = 0.745355992$$
 $x_2 = \phi(x_1) = \frac{1}{\sqrt{(X_1 + 1)}} = 0.756933958$
 $x_3 = \phi(x_2) = \frac{1}{\sqrt{(X_2 + 1)}} = 0.754435787$
 $x_4 = \phi(x_3) = \frac{1}{\sqrt{(X_3 + 1)}} = 0.754972723$
 $x_5 = \phi(x_4) = \frac{1}{\sqrt{(X_4 + 1)}} = 0.754857222$
 $x_6 = \phi(x_5) = \frac{1}{\sqrt{(X_5 + 1)}} = 0.754882063$
 $x_7 = \phi(x_6) = \frac{1}{\sqrt{(X_6 + 1)}} = 0.75487672$
 $x_8 = \phi(x_7) = \frac{1}{\sqrt{(X_7 + 1)}} = 0.754877869$
 $x_9 = \phi(x_8) = \frac{1}{\sqrt{(X_9 + 1)}} = 0.754877622$
 $x_{10} = \phi(x_{10}) = \frac{1}{\sqrt{(X_9 + 1)}} = 0.754877664$
 $x_{12} = \phi(x_{12}) = \frac{1}{\sqrt{(X_{11} + 1)}} = 0.754877666$

Here
$$X_{12} \approx X_{11}$$

Therefore the approximate real root of the given equation is x=0.754877666.

2. Find the real root of the equation 3x=cosx +1 by iteration method.

Solution:

Given equation
$$f(x)=3x-\cos x-1=0$$
;
Now $f(0.6)=3(0.6)-\cos(0.6)-1=-0.025335614=-$ ve
and $f(0.7)=3(0.7)-\cos(0.7)-1=0.335157812=+$ ve
Hence the root lies between $f(0.6;0.7)$
Also $f(x)=3x-\cos x-1=0$
 $f(x)=$

Therefore Iteration method is
$$\mathbf{x}_n = \boldsymbol{\varphi}(\mathbf{x}_{n-1})$$
; n=1,2,....
So $\mathbf{x}_1 = \boldsymbol{\varphi}(\mathbf{x}_0) = \frac{Cos \ x_0 + 1}{3} = \frac{Cos \ 0.6 + 1}{3} = 0.608445205$

$$\mathbf{x}_2 = \boldsymbol{\varphi}(\mathbf{x}_1) = 0.606845906$$

$$\mathbf{x}_3 = \boldsymbol{\varphi}(\mathbf{x}_2) = 0.6071050271$$

$$\mathbf{x}_4 = \boldsymbol{\varphi}(\mathbf{x}_3) = 0.607092401$$

$$\mathbf{x}_5 = \boldsymbol{\varphi}(\mathbf{x}_4) = 0.607103406$$

$$\mathbf{x}_6 = \boldsymbol{\varphi}(\mathbf{x}_5) = 0.607101313$$

$$\mathbf{x}_7 = \boldsymbol{\varphi}(\mathbf{x}_6) = 0.607101636$$

$$\mathbf{x}_8 = \boldsymbol{\varphi}(\mathbf{x}_7) = 0.607101636$$

$$\mathbf{x}_9 = \boldsymbol{\varphi}(\mathbf{x}_8) = 0.607101647$$

$$\mathbf{x}_{10} = \boldsymbol{\varphi}(\mathbf{x}_{10}) = 0.607101648$$

$$\mathbf{x}_{12} = \boldsymbol{\varphi}(\mathbf{x}_{12}) = 0.607101648$$
Here $\mathbf{x}_{11} \approx \mathbf{x}_{12}$

Therefore the approximate real root of the given equation is x=0.607101648.

3. Solve x=0.21 Sin(0.5+x) by iteration method starting with x=0.12.

Solution:

Given equation x=0.21 Sin(0.5+x)

$$=> x=0.21 \sin(0.5+x) = \phi(x)$$
 Where $\phi(x)=0.21 \sin(0.5+x)$

Let the initial approximation be $x_0 = 0.12$

Now
$$|\phi^{I}(x_0)| = |0.21 \cos(0.5 + x_0)|$$

$$= |0.21 \cos(0.5+0.12)| = 0.099994145 < 1$$

in the nbd. of $x=x_0$.

Hence Iteration method is applicable.

Therefore Iteration method is $x_n = \phi(x_{n-1})$; n=1,2,...

So
$$x_1 = \varphi(x_0) = 0.21 \operatorname{Sin}(0.5 + x_0) = 0.21 \operatorname{Sin}(0.5 + 0.12)$$

 $= 0.002272374338$
 $x_2 = \varphi(x_1) = 0.21 \operatorname{Sin}(0.5 + x_1) = 0.001840900823$
 $x_3 = \varphi(x_2) = 0.21 \operatorname{Sin}(0.5 + x_2) = 0.001839319451$
 $x_4 = \varphi(x_3) = 0.21 \operatorname{Sin}(0.5 + x_3) = 0.001839313655$
 $x_5 = \varphi(x_4) = 0.21 \operatorname{Sin}(0.5 + x_4) = 0.001839313634$
 $x_6 = \varphi(x_5) = 0.21 \operatorname{Sin}(0.5 + x_5) = 0.001839313634$
Here $x_5 \approx x_6$

Therefore the approximate real root of the given equation is x=0.001839313634

4. Find the real root of the equation $e^x Tanx = 1$ by iteration Method.

Solution:

Given equation $f(x) = e^x Tanx - 1 = 0$;

Now f(0.5) = -0.099299464 = - ve

and f(0.7) = 0.24657854 = + ve

Hence the root lies between (0.5;0.6)

Also $f(x) = e^x Tanx - 1 = 0$

$$\Rightarrow$$
 Tan x = $\frac{1}{e^x}$

=> $x = Tan^{-1}(e^{-x}) = \phi(x)$ Where $\phi(x) = Tan^{-1}(e^{-x})$

Let the initial approximation be $x_0 = 0.5$

Now $|\phi^{I}(x_0)| = \frac{e^{-x}}{1 + e^{-2x}}| < 1$ in the nbd. of $x = x_0$. Hence Iteration method is applicable. Therefore Iteration method is $\mathbf{x}_n = \phi(\mathbf{x}_{n-1})$; n = 1, 2, ...

So
$$x_1 = \varphi(x_0) = Tan^{-1}(e^{-x_0}) = Tan^{-1}(e^{-0.5}) = 0.54207623$$

 $x_2 = \varphi(x_1) = Tan^{-1}(e^{-x_1}) = 0.525375363$
 $x_3 = \varphi(x_2) = Tan^{-1}(e^{-x_2}) = 0.534022624$
 $x_4 = \varphi(x_3) = Tan^{-1}(e^{-x_3}) = 0.530241889$
 $x_5 = \varphi(x_4) = Tan^{-1}(e^{-x_4}) = 0.531892929$
 $x_6 = \varphi(x_5) = Tan^{-1}(e^{-x_5}) = 0.531171549$
 $x_7 = \varphi(x_6) = Tan^{-1}(e^{-x_5}) = 0.531406667$
 $x_8 = \varphi(x_7) = Tan^{-1}(e^{-x_7}) = 0.531349002$
 $x_9 = \varphi(x_8) = Tan^{-1}(e^{-x_9}) = 0.531409141$
 $x_{10} = \varphi(x_{10}) = Tan^{-1}(e^{-x_9}) = 0.531382769$
 $x_{11} = \varphi(x_{11}) = Tan^{-1}(e^{-x_{10}}) = 0.531389332$
Here $x_{11} \approx x_{12}$

Therefore the approximate real root of the given equation is x=0.53139.

5. Find the real root of the equation $x^3+x-1=0$ by iteration Method.

Sol:

Given equation
$$f(x) = x^3+x-1=0$$

Now
$$f(0.6) = -0.184 = - Ve$$

And
$$f(0.7) = 0.043 = + Ve$$

Hence the root lies between (0.6,0.7)

Also
$$x^3+x-1=0 => x(x^2+1)=1$$

$$=> x = \frac{1}{x^2 + 1} = \phi(x)$$
 Where $\phi(x) = \frac{1}{x^2 + 1}$

Let the initial approximation be $x_0 = 0.7$

Now
$$|\phi^{|}(x_0)| = |-\frac{2x}{(1+x^2)^2}| < 1$$
 in the nbd. of $x=x_0$.

Hence Iteration method is applicable.

Therefore Iteration method is $x_n = \phi(x_{n-1})$; n=1,2,...So $x_1 = \phi(x_0) = \frac{1}{x_0^2 + 1} = \frac{1}{0.7^2 + 1} = 0.671140939$ $x_2 = \phi(x_1) = 0.689450638$ $x_3 = \phi(x_2) = 0.677808858$ $x_4 = \phi(x_3) = 0.685201434$ $x_5 = \phi(x_4) = 0.680503106$ $x_6 = \phi(x_5) = 0.683487532$ $x_7 = \phi(x_6) = 0.681591146$ $x_8 = \phi(x_7) = 0.682795903$ $x_9 = \phi(x_8) = 0.682030427$ $x_{10} = \phi(x_{10}) = 0.682516751$ $x_{11} = \phi(x_{11}) = 0.682207761$ $x_{12} = \phi(x_{12}) = 0.682404073$ Here $x_{11} \approx x_{12}$

Therefore the approximate real root of the given equation is x=0.6823 up to four decimal places .

Let x_0 be the an approximate value of a root of the equation f(x)=0 and let (x_0+h) be the exact value of the corresponding root where h is very small quantity. Then $f(x_0+h)=0$ expanding by using Taylor's theorem we get

$$f(x_0)+hf^1(x_0)+(h^2/2) f^{11}(x_0)+...=0$$

Since h is very small, neglecting Second and higher order terms and taking the first approximation we have

$$f(x_0)+hf^1(x_0) = 0$$
=> $hf^1(x_0) = -f(x_0)$
=> $h = -f(x_0)/f^1(x_0)$, provided $f^1(x_0) \neq 0$
=> $x_1 = x_0 + h = x_0 - [f(x_0)/f^1(x_0)]$
=> $x_1 = x_0 - [f(x_0)/f^1(x_0)]$(1)

equation (1) gives the improved value of the root over the previous (1).

Now putting x_1 for x_0 and x_2 for x_1 in equation (1) we get

$$x_2 = x_1 - [f(x_1)/f^1(x_1)]$$

Continuing in this manner, we get

$$X_{n+1} = x_n - [f(x_n)/f^1(x_n)],$$

n=0,1,2,3,....

This is known as **Newton-Raphson** method.

The process can be continued till the desired accuracy has been achieved.

1.Find the real root of the equation x³-2x-5=0 by Newton-Raphson method.

Solution:

Given equation
$$f(x) = x^3-2x-5=0$$

Now $f(2) = 2^3-2(2)-5 = -1 = -ve$
and $f(2.1) = (2.1)^3-2(2.1)-5 = 0.061 = +ve$
Hence the root lies between $(2,2.1)$
Let the initial approximation be $x_0 = 2.1$
Also $f(x) = x^3-2x-5=0$
Now $f^1(x) = 3x^2-2$
and $f^1(x_0) = 3(2.1)^2-2=11.23 \neq 0$.

By **Newton-Raphson** method we have

$$X_{n+1} = x_n - [f(x_n)/f^1(x_n)], n=0,1,2,3,....$$

So $x_1 = x_0 - [f(x_0)/f^1(x_0)]$
 $x_1 = 2.1 - [((2.1)^3 - 2(2.1) - 5)/(3(0.1)^2 - 2)]$
 $= 2.094568121$
 $x_2 = x_1 - [f(x_1)/f^1(x_1)] = 2.094551482$
 $x_3 = x_2 - [f(x_2)/f^1(x_2)] = 2.094551482$
Here $x_2 \approx x_3$

Hence the approximate real root of the given equation is x = 2.094551482.

2.Find the real root of the equation 3x = cosx + 1 by Newton-Raphson method.

Solution:

```
Given equation f(x) = 3x - \cos x - 1 = 0;
Now f(0.6) = 3(0.6) - \cos(0.6) - 1 = -0.025335614 = - ve
 and f(0.7) = 3(0.7)-Cos(0.7)-1=0.335157812 = + ve
     Hence the root lies between (0.6;0.7)
Let the initial approximation be x_0 = 0.6
Also f(x) = 3x - \cos x - 1
Now f^1(x) = 3 + Sinx
and f^1(x_0) = 3+\sin 0.6 = 3.564642473 \neq 0.
By Newton-Raphson method we have
             X_{n+1} = x_n - [f(x_n)/f^1(x_n)], n=1,2,3,...
```

So
$$x_1 = x_0$$
- [$f(x_0)/f^1(x_0)$]
 x_1 = 0.6 - [(3x0.6-Cos(0.6)-1)/(3+Sin(0.6))]
= 0.607107477
 $x_2 = x_1$ - [$f(x_1)/f^1(x_1)$] = 0.607101648
 $x_3 = x_2$ - [$f(x_2)/f^1(x_2)$] = 0.607101648
Here $x_2 \approx x_3$

Hence the approximate real root of the given equation is x = 0.607101648.

3.Find the real root of the equation x log₁₀x=1.2 by Newton-Raphson method. Solution:

Given equation $f(x) = x \log_{10} x - 1.2 = 0$; Now $f(2.7) = 2.7 \log_{10} 2.7 - 1.2 = -0.035317836 = - ve$ and $f(2.8) = 2.8 \log_{10} 2.8 - 1.2 = 0.052042487 = + ve$ Hence the root lies between(2.7,2.8) Let the initial approximation be $x_0 = 2.7$

Also $f(x)=x \log_{10}x-1.2$ Now $f^1(x)=\log_{10}x + x(1/x)\log_N e = \log_{10}x + 0.43429$ and $f^1(x_0)=\log_{10}2.7+0.43429 = 0.865653764 \ \dprice 0.$ By **Newton-Raphson** method we have

$$X_{n+1} = x_n - [f(x_n)/f^1(x_n)], n=1,2,3,....$$

So
$$x_1 = x_0$$
- [$f(x_0)/f^1(x_0)$]
 $x_1 = 2.7$ - [(2.7 $log_{10}2.7$ -1.2)/($log_{10}2.7$ +0.43429)]
 $= 2.740799033$
 $x_2 = x_1$ - [$f(x_1)/f^1(x_1)$] = 2.740646097
 $x_3 = x_2$ - [$f(x_2)/f^1(x_2)$] = 2.740646096
Here $x_2 \approx x_3$

Hence the approximate real root of the given equation is x = 2.740646096.

4.Find the real root of the equation x²-5x+2=0 by Newton-Raphson's method.

Sol: Given equation $f(x) = x^2-5x+2=0$

Now
$$f(0.4) = (0.4)^2 - 5(0.4) + 2 = 0.16 = +ve$$

And
$$f(0.5) = (0.5)^2 - 5(0.5) + 2 = -0.25 = -ve$$

Therefore the real root of the given equation lies between (0.4, 0.5)

Let us take the origin $x_0 = 0.4$

By Newton-Raphson method we have

$$X_{n+1} = x_n - \left[\frac{f(x_n)}{f^1(x_n)} \right]$$
, n=1,2,3,....

So
$$x_1 = x_0 - \left[\frac{f(x_0)}{f^1(x_0)}\right] = x_0 - \left[\frac{x_0^3 - 3x_0 - 5}{3x_0^2 - 3}\right]$$

$$= 2.3 - \left[\frac{2.3^3 - 3(2.3) - 5}{3(2.3)^2 - 5}\right]$$

$$= 2.275436983$$

$$x_2 = x_1 - \left[\frac{f(x_1)}{f^1(x_1)}\right] = 2.279707226$$

$$x_3 = x_2 - \left[\frac{f(x_2)}{f^1(x_2)}\right] = 2.27888909$$

$$x_4 = x_3 - \left[\frac{f(x_3)}{f^1(x_3)}\right] = 2.279043314$$
Here $x_3 \approx x_4$

Hence the approximate real root of the given equation is x = 2.279.

So
$$x_1 = x_0 - \left[\frac{f(x_0)}{f^1(x_0)}\right] = x_0 - \left[\frac{x_0^2 - 5x_0 + 2}{2x_0 - 5}\right]$$

= $0.4 - \left[\frac{0.4^2 - 5(0.4) + 2}{2(0.4) - 5}\right]$
= 0.438095238

$$x_2 = x_1 - \left[\frac{f(x_1)}{f^1(x_1)}\right] = 0.438447157$$

$$x_3 = x_2 - \left[\frac{f(x_2)}{f^1(x_2)}\right] = 0.438447187$$

$$x_4 = x_3 - \left[\frac{f(x_3)}{f^1(x_3)}\right] = 0.438447187$$

Here $x_3 \approx x_4$

Hence the approximate real root of the given equation is x = 0.438447187.

5. Find a real root of the equation x³-3x-5=0 by Newton-Raphson method.

Sol:

Given equation $f(x) = x^3 - 3x - 5 = 0$

Now $f(2.2) = (2.2)^3 - 3(2.2) - 5 = -0.952 = -ve$

And $f(2.3) = (2.3)^3 - 3(2.3) - 5 = 0.267 = +ve$

Therefore the real root of the given equation lies

between (2.2,2.3)

Let us take the origin $x_0 = 2.3$

By Newton-Raphson method we have

$$X_{n+1} = x_n - \left[\frac{f(x_n)}{f^1(x_n)}\right], n=1,2,3,....$$

So
$$x_1 = x_0 - \left[\frac{f(x_0)}{f^1(x_0)}\right] = x_0 - \left[\frac{x_0^3 - 3x_0 - 5}{3x_0^2 - 3}\right] = 2.3 - \left[\frac{2.3^3 - 3(2.3) - 5}{3(2.3)^2 - 5}\right]$$

= 2.275436983

$$x_2 = x_1 - \left[\frac{f(x_1)}{f^1(x_1)}\right] = 2.279707226$$
 $x_3 = x_2 - \left[\frac{f(x_2)}{f^1(x_2)}\right] = 2.27888909$
 $x_4 = x_3 - \left[\frac{f(x_3)}{f^1(x_3)}\right] = 2.279043314$

Here $x_3 \approx x_4$

Hence the approximate real root of the given equation is x = 2.279.

6.Find a real root of the equation x⁴-x-10=0 correct to three decimal places by Newton-Raphson method.

Sol: Given equation $f(x) = x^4 - x - 10 = 0$

Now
$$f(1.8) = (1.8)^4 - (1.8) - 10 = -1.3024 = -ve$$

And
$$f(1.9) = (1.9)^4 - (1.9) - 10 = 1.1321 = +ve$$

Therefore the real root of the given equation lies between (1.8,1.9)

Let us take the origin $x_0 = 1.8$

By Newton-Raphson method we have $X_{n+1} = x_n$ - [$\frac{f(x_n)}{f^1(x_n)}$], n=1,2,3,...

So
$$x_1 = x_0 - \left[\frac{f(x_0)}{f^1(x_0)}\right] = x_0 - \left[\frac{x_0^4 - x_0 - 10}{4x_0^3 - 1}\right] = 1.8 - \left[\frac{1.8^4 - (1.8) - 10}{4(1.8)^3 - 1}\right] = 1.858330348$$

$$x_{2} = x_{1} - \left[\frac{f(x_{1})}{f^{1}(x_{1})}\right]$$

$$= 1.855590855$$

$$x_{3} = x_{2} - \left[\frac{f(x_{2})}{f^{1}(x_{2})}\right]$$

$$= 1.855584529$$

$$x_{4} = x_{3} - \left[\frac{f(x_{3})}{f^{1}(x_{3})}\right]$$

$$= 1.855584529s$$

Here
$$x_3 \approx x_4$$

Hence the approximate real root of the given equation is x = 1.855584529.

7.Using Newton-Raphson method , establish the iterative formula $x_{n+1} = (1/3)[2 x_n + (N/x_n^2)]$ to calculate the cube root of N. Hence deduce the value of cube root of 12.

Solution:

Let
$$x = 3 \lor N = x^3 = N = x^3 - N = 0$$

Let $f(x) = x^3 - N$. Then $f^1(x) = 3x^2$.

By **Newton-Raphson** method we have

$$X_{n+1} = x_n - [f(x_n)/f^1(x_n)], n=1,2,3,...$$

 $= x_n - [(x_n^3 - N)/3x_n^2)]$
 $= (2x_n^3 + N)/3x_n^2$
 $X_{n+1} = (1/3)[2x_n + (N/x_n^2)] \text{ for } n=0,1,2,....$

Let
$$x = 3 \sqrt{12} = x^3 = 12 = x^3 - 12 = 0$$

Let
$$f(x) = x^3 - 12$$
. Then $f^1(x) = 3x^2$.

By **Newton-Iteration** method we have

$$X_{n+1} = (1/3) [2x_n + (N/x_n^2)] \text{ for } n=0,1,2,....$$

Let the initial approximation be $x_0 = 2.3$ and N=12

$$X_1 = (1/3)[2x_0 + (12/x_0^2)] = (1/3)[2(2.3) + (12/2.3^2)]$$

=2.289477001

$$X_2 = (1/3)[2x_1 + (12/x_1^2)] = 2.289428486$$

$$X_3 = (1/3)[2x_2 + (12/x_2^2)] = 2.289428485$$

$$X_4 = (1/3)[2x_3 + (12/x_3^2)] = 2.289428485$$

Hence the approximate value of $\sqrt[3]{12} = 2.289428485$.

8.Using Newton-Raphson method, establish the iterative formula $x_{n+1} = (1/2)[x_n + (N/x_n)]$ to calculate the Square root of N. Hence deduce the value of Square root of 2.

Solution:

Let
$$x = \sqrt{N} = > x^2 = N = > x^2 - N = 0$$

Let $f(x) = x^2 - N$. Then $f^1(x) = 2x$.

By **Newton-Raphson** method we have

$$X_{n+1} = x_n - [f(x_n)/f^1(x_n)]$$

= $x_n - [(x_n^2 - N)/2x_n)]$
= $(x_n^2 + N)/2x_n$
 $X_{n+1} = (1/2)[x_n + (N/x_n)]$ for n=0,1,2,....

Let
$$x = \sqrt{2} = x^2 = 2 = x^2 - 2 = 0$$

Let
$$f(x) = x^2 - 2$$
. Then $f^1(x) = 2x$.

By **Newton-Iteration** method we have

$$X_{n+1} = (1/2) [x_n + (N/x_n)]$$
for n=0,1,2,....

Let the initial approximation be $x_0 = 1.4$ and N=2

$$X_1 = (1/2)[x_0 + (2/x_0)] = (1/2)[1.4 + (2/1.4)]$$

= 1.414285714

$$X_2 = (1/2)[x_1 + (2/x_1)] = 1.414213564$$

$$X_3 = (1/2)[x_2 + (2/x_2)] = 1.414213562$$

$$X_4 = (1/2)[x_3 + (2/x_3)] = 1.414213562$$

Here X₃≈X₄

Hence the approximate value of $\sqrt{2} = 1.414213562$.

Consider the equation f(x)=0 and let a,b be two values of x such that f(a) and f(b) are of opposite sign. Also let a<b. The graph of y=f(x) will meet the x-axis at the some point between a and b .The equation of the line joining the two points (a, f(a)), (b, f(b)) is

$$y-f(a) = [(f(b)-f(a))/(b-a)] / (x-a)(1)$$

In the small interval (a , b), the graph of the function can be considered as a straight line. So the x-co-ordinate of the point of intersection of the chord joining (a,f(a)),(b,f(b)) with the axis will give an approximate value of the root.

So by putting y=0 in equation (1) we get -f(a) = [(f(b)-f(a))/(b-a)] / (x-a) \Rightarrow x= (af(b)-bf(a)) / (f(b)-f(a)) If we take (a,b)as (a_1, b_1) then the first approximation root is If $f(a_1)$ and $f(x_1)$ are of opposite signs then the root lies between a_1 and x_1 ; otherwise it lies between x_1 and b₁ .We rename the interval in which the root lies as $(a_2,b_2).$

Then the next approximation root is

$$x_2 = (a_2f(b_2)-b_2f(a_2)) / (f(b_2)-f(a_2))(3)$$

Proceeding in this way we get

$$x_n = (a_n f(b_n)-b_n f(a_n)) / (f(b_n)-f(a_n))$$

This method applied repeatedly till the desired accuracy is obtained.

This method is known as falsi position method or Regula-Falsi method or method of chord.

1. Find areal root of the equation $f(x)=x^3-2x-5=0$ by the method of false position up to three places of decimals.

Solution:

Given equation
$$f(x)=x^3-2x-5=0$$

Now $f(2)=(2)^3-2(2)-5=-1=-ve$
And $f(2.1)=(2.1)^3-2(2.1)-5=0.061=+ve$
Therefore the root lies between (2,2.1)
By Regula-Falsi method, we
$$X_n = [a_n f(b_n)-b_n f(a_n)] / [f(b_n)-f(a_n)]$$

I) Let
$$a_0 = 2$$
 & $f(a_0) = -1$
 $b_0 = 2.1$ & $f(b_0) = 0.061$
Now $x_0 = [a_0 f(b_0) - b_0 f(a_0)] / [f(b_0) - f(a_0)]$
 $= [2x0.061 + 1x2.1] / [0.061 + 1]$
 $= 2.094250707$

So
$$f(x_0)=(2.094250707)^3-2(2.094250707)-5$$

 $=-0.00335650926=-ve$
Therefore the root lies between (2.094250707 , 2.1)
II) Let $a_1=2.094250707$ & $f(a_1)=-0.00335650926$
 $b_1=2.1$ & $f(b_1)=0.061$
Now $x_1=\left[a_1f(b_1)-b_1f(a_1)\right]/\left[f(b_1)-f(a_1)\right]$
 $=\left[2.094250707x0.061+2.1x0.00335650926\right]/\left[0.061+0.00335650926\right]$
 $=2.094550561$
So $f(x_1)=(2.094550561)^3-2(2.094550561)-5$
 $=-0.00001027482=-ve$

Therefore the root lies between (2.094550561, 2.1)

III) Let
$$a_2$$
=2.094550561 & $f(a_2)$ = -0.00001027482
 b_2 = 2.1 & $f(b_2)$ = 0.061
Now x_2 = $[a_2f(b_2)-b_2f(a_2)]$ / $[f(b_2)-f(a_2)]$
= 2.094551479
So $f(x_2)$ =(2.094551479)³-2(2.094551479)-5
= -0.00000003121= - ve

Which is nearer to Zero.

Therefore the approximate real root of the given equation is x = 2.094551479.

Srinivasa Ramanujan described an iterative method which can be used to determine the smallest root of the equation f(x)=0 (1)

Where
$$f(x)=1-(a_1x+a_2x^2+a_3x^3+a_4x^4+.....)$$
 (2)

For smaller values of x, we can write

[1-(
$$a_1x+a_2x^2+a_3x^3+a_4x^4+...$$
)]⁻¹ = $b_1+b_2x+b_3x^2+...$...(3)

Expanding the LHS of equation (3) by using Binomial theorem, we get

$$1+(a_1x+a_2x^2+a_3x^3+a_4x^4+.....)+(a_1x+a_2x^2+a_3x^3+a_4x^4+.....)^2 +....=b_1+b_2x+b_3x^2+...... (4)$$

Comparing the coefficients of like powers of x on bothsides of (4), we get

$$b_1 = 1$$

 $b_2 = a_1 = a_1b_1$
 $b_3 = a_1^2 + a_2 = a_1b_2 + a_2b_1$

••••••

$$b_n = a_1 b_{n-1} + a_2 b_{n-2} + \dots + a_{n-1} b_1$$
, $n = 2,3,\dots$

Ramanujan states that the successive convergent, i.e., b_n / b_{n+1}

approaches a root of the equation (2)

1. Find the smallest root of the equation $f(x)=x^3-6x^2+11x-6=0$ using Ramanujan's method.

Solution:

Given
$$f(x)=x^3-6x^2+11x-6=0$$
 (1)
We write the given equation (1) as follows:
 $-6[1-((11x-6x^2+x^3)/6)]=0$
 $=>[1-((11x-6x^2+x^3)/6)]^{-1}=b_1+b_2x+b_3x^2+......$ (2)
 $=>[1-(a_1x+a_2x^2+a_3x^3+.....)]^{-1}=b_1+b_2x+b_3x^2+......$ Where $a_1=(11/6)$; $a_2=-1$; $a_3=(1/6)$; $a_4=a_5=.....=0$
Comparing the like coefficients, we have $b_1=1$
 $b_2=a_1=11/6$
 $b_3=a_1b_2+a_2b_1=(11/6)(11/6)+(-1)(1)=85/36$
 $b_4=a_1b_3+a_2b_2+a_3b_1=(11/6)(85/36)+(-1)(11/6)+(1/6)(1)=575/216$
 $b_5=a_1b_4+a_2b_3+a_3b_2+a_4b_1=3661/1296$
 $b_6=a_1b_5+a_2b_4+a_3b_3+a_4b_2+a_5b_1=22631/1296$

Therefore

$$b_1/b_2 = 1/6 = 0.1666666667$$

 $b_2/b_3 = (11/6) / (85/36) = 0.7764705882$
 $b_3/b_4 = (85/36) / (575/216) = 0.8869565217$
 $b_4/b_5 = (575/216) / (3661/1296) = 0.9423654739$
 $b_5/b_6 = (3661/216) / (22631/1296) = 0.9706155274$.
We observe that, the successive convergents approach

We observe that, the successive convergents approach the root.

Hence the smallest root of the given equation is x=1.

2.Find the smallest root of the equation $x e^x = 1$ using Ramanujan's method.

Solution:

Given
$$x e^x = 1 \dots (1)$$

Expanding e^x in ascending powers of x and simplifying we can rewrite as

$$X(1 + x + (x^2/2) + (x^3/6) + (x^4/24) + \dots = 1$$

=> $x + x^2 + (x^3/2) + (x^4/6) + (x^5/24) + \dots = 1$

Hence we write

$$=>[1-(a_1x + a_2x^2 + a_3x^3 +)]^{-1} = b_1 + b_2x + b_3x^2 +$$

Where
$$a_1 = 1$$
; $a_2 = 1$; $a_3 = (1/2)$; $a_4 = (1/6)$: $a_5 = (1/24)$:.....

Comparing the like coefficients, we have

$$b_1 = 1$$

$$b_2 = a_1 = 1$$

$$b_3 = a_1b_2 + a_2b_1 = 1 + 1 = 2$$

$$b_4 = a_1b_3 + a_2b_2 + a_3b_1 = 2 + 1 + (1/2) = 7/2$$

$$b_5 = a_1b_4 + a_2b_3 + a_3b_2 + a_4b_1 = (7/2) + 2 + (1/2) + (1/6) = 37/6$$

$$b_6 = a_1b_5 + a_2b_4 + a_3b_3 + a_4b_2 + a_5b_1 = (37/6) + (7/2) + 1 + (1/6) + (1/24) = 261/24$$

Therefore

$$b_1/b_2 = 1$$

 $b_2/b_3 = 1/2 = 0.5$
 $b_3/b_4 = 2x(2/7) = 4/7 = 0.571428571$
 $b_4/b_5 = (7/2)x(6/37) = 0.567567567$
 $b_5/b_6 = (37/6)x(24/261) = 0.567049808$.

Hence the approximate root of the given equation is x=0.567 up to three decimal places.

3. Find the smallest root of the equation 1- $x + (x^2/2!^2) - (x^3/3!^2) + (x^4/4!^2) - = 0$ using Ramanujan's method.

Solution:

Comparing the like coefficients, we have

$$b_1 = 1$$

 $b_2 = a_1 = 1$
 $b_3 = a_1b_2+a_2b_1 = 1 - 1/(2!)^2 = 3/4$
 $b_4 = a_1b_3+a_2b_2+a_3b_1 = (3/4) - (1/(2!)^2) + ((1/3!)^2) = 19/36$
 $b_5 = a_1b_4+a_2b_3+a_3b_2+a_4b_1 = 211/576$

Therefore

Hence the approximate root of the given equation is x=1.440758294.

Thank you!